已知数列{}中,为其前n项和,且,当时,恒有(为常数).(Ⅰ)求常数的值;(Ⅱ)当时,求数列{}的通项公式;(Ⅲ)设,数列的前n项和为,求证:.
已知数列中,,,其前项和满足 ().(1)求数列的通项公式;(2)设(),试确定非零整数的值,使得对任意,都有成立.
已知椭圆的两焦点为F1(),F2(1,0),直线x = 4是椭圆的一条准线.(1)求椭圆方程;(2)设点P在椭圆上,且,求cos∠F1PF2的值;(3)设P是椭圆内一点,在椭圆上求一点Q,使得最小.
设关于的不等式的解集为A . (1)若, 求A ; (2)若A, 求实数的取值范围; (3)若“”是“”的必要不充分条件, 求实数的取值范围.
在中,,,.(1)求边的长度;(2)若点是的中点,求中线的长度.
已知命题:函数的值域为R;命题:函数是R上的减函数.若或为真命题,且为假命题,求实数a的取值范围。