已知椭圆的两焦点为F1(),F2(1,0),直线x = 4是椭圆的一条准线.(1)求椭圆方程;(2)设点P在椭圆上,且,求cos∠F1PF2的值;(3)设P是椭圆内一点,在椭圆上求一点Q,使得最小.
已知A(1,﹣2,11),B(4,2,3),C(6,﹣1,4),求证其为直角三角形.
如图,已知矩形ABCD中,|AD|=3,|AB|=4.将矩形ABCD沿对角线BD折起,使得面BCD⊥面ABD.现以D为原点,DB作为y轴的正方向,建立如图空间直角坐标系,此时点A恰好在xDy坐标平面内.试求A,C两点的坐标.
如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,且边长为2a,棱PD⊥底面ABCD,PD=2b,取各侧棱的中点E,F,G,H,写出点E,F,G,H的坐标.
如图,长方体ABCD﹣A'B'C'D'中,|AD|=3,|AB|=5,|AA'|=3,设E为DB'的中点,F为BC'的中点,在给定的空间直角坐标系D﹣xyz下,试写出A,B,C,D,A',B',C',D',E,F各点的坐标.
(1)在数轴上求一点的坐标,使它到点A(9)与到点B(﹣15)的距离相等;(2)在数轴上求一点的坐标,使它到点A(3)的距离是它到点B(﹣9)的距离的2倍.