(本小题满分8分)化简:.
化简:.
如图,⊙C的内接⊿AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(-2,6)(1)求抛物线的函数解析式.(2)直线m与⊙C相切于点A交y轴于点D,动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动,点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值(3)点R在抛物线位于x轴下方部分的图象上,当⊿ROB面积最大时,求点R的坐标.
在Rt⊿POQ中,OP=OQ=4,M是PQ中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与⊿POQ的两直角边分别交于点A、B,(1)求证:MA=MB(2)连接AB,探究:在旋转三角尺的过程中,⊿AOB的周长是否存在最小值,若存在,求出最小值,若不 存在。请说明理由。
学校6名教师和234名学生集体外出活动,准备租用445座大客车或30座小客车,若租用1辆大车2辆小车供需租车费1000元;若若租用2辆大车1辆小车供需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案。
矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.(1)求证:⊿AEF∽⊿DCE(2)求tan∠ECF的值.