解方程:.
如图,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F. (1) 求证:DE-BF = EF.(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系, 并说明理由. (3) 若点G为CB延长线上一点,其余条件不变.请画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).
某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,下图是甲、乙两车间的距离(千米)与乙车出发(时)的函数的部分图像(1)A、B两地的距离是 千米,甲车出发 小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,与的函数关系式及的取值范围,并在图中补全函数图像;(3)乙车出发多长时间,两车相距150千米?
某住宅小区的物业管理部门为解决住户停车困难,将一条道路辟为停车场,停车位置如图所示.已知矩形ABCD是供一辆机动车停放的车位,其中AB=5.4米,BC=2.2米,∠DCF=40°.请计算停车位所占道路的宽度EF(结果精确到0.1米).参考数据:sin40°≈0.64 cos40°≈0.77 tan40°≈0.84.
如图,为的直径,为弦,且,垂足为.(1)如果的半径为4,1,求的度数;(2)在(1)的条件下,圆周上到直线距离为3的点有多少个?并说明理由.
红星中学开展了“绿化家乡,植树造林 ”活动,并对该校的甲、乙、丙、丁四个班级种树情况进行了考察,并将收集的数据绘制了图①和图②两幅尚不完整的统计图.请根据图中提供的信息,完成下列问题:(1)这四个班共种树__________棵树.(2)请你补全两幅统计图.(3)若四个班种树的平均成活率是90%,全校共种树2000棵,请你估计这些树中,成活的树约有多少棵?