已知,若函数在上的最大值为,最小值为.(1)求的表达式;(2)求的表达式并说出其最值.
在数列和中,,,,其中且,.设,,试问在区间上是否存在实数使得.若存在,求出的一切可能的取值及相应的集合;若不存在,试说明理由.
学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设为选出的人中既会唱歌又会跳舞的人数,且.(1)求文娱队的队员人数;(2)写出的概率分布列并计算
在直角坐标系中,直线的参数方程为(为参数),若以直角坐标系 的点为极点,为极轴,且长度单位相同,建立极坐标系,得曲线的极坐标方程为.(1)求直线的倾斜角;(2)若直线与曲线交于两点,求
已知矩阵,向量.求向量,使得.
已知数列单调递增,且各项非负,对于正整数,若任意的,(≤≤≤),仍是中的项,则称数列为“项可减数列”.(1)已知数列是首项为2,公比为2的等比数列,且数列是“项可减数列”,试确定的最大值;(2)求证:若数列是“项可减数列”,则其前项的和;(3)已知是各项非负的递增数列,写出(2)的逆命题,判断该逆命题的真假,并说明理由.