在平面直角坐标系中,五边形ABCDE的五个顶点分别为A(-2,3),B(-4,2),C(-3,0),D(-1,1),E(-1,2),以坐标原点为位似中心,将五边形ABCDE放大,使放大后的五边形的边长是原五边形对应边长的2倍,比较放大后的图形,你能得到什么结论?
如图,一张直角三角形的纸片ABC,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且AC与AE重合,求CD的长.
如图,有一四边形纸片ABCD,AB∥CD,AD∥BC,∠A=60°,将纸片分别沿折痕MN、PQ折叠,使点A与AB边上的点E重合,点C与CD边上的点F重合,EG平分∠MEB交CD于G,FH平分∠PFD交AB于H.试说明: (1)EG∥FH;(2)ME∥PF.
如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,在方格纸中建立平面直角坐标系如图所示. (1)画出△ABC关于x轴的对称图形△A1B1C1,并写出△A1B1C1各顶点的坐标. (2)把(1)中的△A1B1C1绕着点O顺时针旋转180°得到△A2B2C2,在图中画出△A2B2C2,并回答△A2B2C2与△ABC对应顶点的坐标有何关系.
如图所示,矩形AOBC在直角坐标系中,O为原点,A在x轴上,B在y轴上,直线AB的函数关系式为,M是OB上的一点,若将梯形AMBC沿AM折叠,点B恰好落在x轴上的点B′处,C的对应点为C′. (1)求出B′点和M点的坐标; (2)求直线A C′的函数关系式; (3)设一动点P从A点出发,以每秒1个单位速度沿射线AB方向运动,过P作PQ⊥AB,交射线AM于Q; ①求运动t秒时,Q点的坐标;(用含t的代数式表示) ②以Q为圆心,以PQ的长为半径作圆,当t为何值时,⊙Q与y轴相切?
在某一地方,有条小河和草地,一天某牧民的计划是从A处的牧场牵着一只马到草地牧马,再到小河饮马,你能为他设计一条最短的路线吗?(在N上任意一点即可牧马,M上任意一点即可饮马.)(保留作图痕迹,需要证明)