操作:如图,在正方形ABCD中,P是CD上一动点(与C,D不重合),令三角板(一个锐角为30°)的直角顶点与点P重合,并且一条直角边始终过点B,另一直角边与正方形的某一边所在的直线交于点E.探究:(1)观察操作结果,哪一个三角形与△BPC相似?并说明理由.(2)当点P位于CD的中点时,你找到的三角形与△BPC的相似比是多少?
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
如图,过点B的直线l:交y轴于点A,与反比例函数的图象交于点C(2,n)和点D.(1)求m和n的值,及另一交点D的坐标;(2)求△COD的面积。
如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系; ②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连结AD、CD.(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C 、D ;②⊙D的半径= (结果保留根号);
如图,已知AB是⊙O的直径,点C,D在⊙O上.(1)若∠CAB=30°,求∠ADC的度数;(2)若弦AC=cm,阴影部分弓高为6,求弓形的面积;
已知反比例函数,当时,.求:(1)关于的函数解析式; (2)当时,自变量的取值范围.