某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
(年广西南宁10分)如图甲,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM 上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC. (1)试判断BE与FH的数量关系,并说明理由; (2)求证:∠ACF=90°; (3)连接AF,过A,E,F三点作圆,如图乙. 若EC=4,∠CEF=15°,求的长.
(年广西来宾10分)如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE. (1)直接写出AE与BC的位置关系; (2)求证:△BCG∽△ACE; (3)若∠F=60°,GF=1,求⊙O的半径长.
(年广东深圳9分)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD. (1)求⊙M的半径; (2)证明:BD为⊙M的切线; (3)在直线MC上找一点P,使|DP﹣AP|最大.
(年广东汕尾11分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于E. (1)求证:点E是边BC的中点; (2)求证:BC2=BD•BA; (3)当以点O、D、E、C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.
(2013年四川宜宾3分)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4. 其中正确的是 (写出所有正确结论的序号).