如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.(1)已知两条抛物线①:y=x2+2x-1,②:y=-x2+2x+1,判断这两条抛物线是否关联,并说明理由;(2)抛物线C1:y=(x+1)2-2,动点P的坐标为(t,2),将抛物线C1绕点P(t,2)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.
已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积.
△ABC中,AB=AC=5,BC=6,建立适当的直角坐标系,并写出点A、B、C的坐标;
一个三角形的三边的长分别是3、4、5,则这个三角形最长边上的高是 ()
某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠. (1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含a的代数式表示.) (2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由. (3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之为.(用含a的代数式表示,并化简.) (4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)
在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移|a|格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移|b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).例如,从A到B记为:A→B(+l,+3);从C到D记为:C→D(+1,-2), 回答下列问题: (1)如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程. (2)若点A运动的路线依次为:A→M(+2,+3),M→N(+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M、N、P、Q的位置. (3)在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是;n与q满足的数量关系是.