如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为18°,且OA=OB=3m.(1)求此时另一端A离地面的距离(结果精确到0.1);(2)跷动AB,使端点A碰到地面,请画出点A运动的路线(保留画图痕迹),并求出点A运动路线的长.(结果保留)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
(10分)问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.问题解决如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.解:由图可知:M=a2+b2,N=2ab.∴M-N=a2+b2-2ab=(a-b)2.∵a≠b,∴(a-b)2>0.∴M-N>0.∴M>N.类别应用(1)已知小丽和小颖购买同一种商品的平均价格分别为元/千克和元/千克(a、b是正数,且a≠b),试比较小丽和小颖所购买商品的平均价格的高低.(2)试比较图2和图3中两个矩形周长M1、N1的大小(b>c).联系拓广小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b>a>c>0),售货员分别可按图5、图6、图7三种方法进行捆绑,吻哪种方法用绳最短?哪种方法用绳最长?请说明理由.
(10分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?
(8分)在□ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.
(8分)某企业为了改善污水处理条件,决定购买A、B两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨.(1)企业有哪几种购买方案?(2)哪种购买方案更省钱?
(6分)某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40º减至35º.已 知原楼梯AB长为5m,调整后的楼梯所占地面CD有多长?(结果精确到0.1m.参考数据: sin40º≈0.64,cos40º≈0.77,sin35º≈0.57,tan35º≈0.70)