如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为18°,且OA=OB=3m.(1)求此时另一端A离地面的距离(结果精确到0.1);(2)跷动AB,使端点A碰到地面,请画出点A运动的路线(保留画图痕迹),并求出点A运动路线的长.(结果保留)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若CB=2,CE=4,①求圆的半径;②求DE、DF的长.
某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,若这种商品每件的销售价每提高0.5元,其销售量就减少10件.问(1)每件售价定为多少元时,才能使利润为640元?(2)每件售价定为多少元时,才能使利润最大?
如图,抛物线y1=-x2+3与x轴交于A、B两点,与直线y2=-x+b相交于B、C两点.(1)求直线BC的解析式和点C的坐标;(2)若对于相同的x,两个函数的函数值满足y1≥y2,则自变量x的取值范围是 .
如图,点P在圆O外,PA与圆O相切于A点,OP与圆周相交于C点,点B与点A关于直线PO对称,已知OA=4,PA=4.求:(1)∠POA的度数;(2)弦AB的长;(3)阴影部分的面积(结果保留π).
已知关于x的一元二次方程x2-3x+2a+1=0有两个不相等的实数根.(1)求实数a的取值范围;(2)若a为符合条件的最大整数,且一元二次方程x2-3x+2a+1=0的两个根为x1,x2,求x12x2+x1x22的值.