如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为18°,且OA=OB=3m.(1)求此时另一端A离地面的距离(结果精确到0.1);(2)跷动AB,使端点A碰到地面,请画出点A运动的路线(保留画图痕迹),并求出点A运动路线的长.(结果保留)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
在甲、乙两个袋子中分别装有如图点数的牌,假设随机从袋子中抽牌时,每张牌被抽到的机会是均等的.那么分别从两个袋子各抽取1张牌时,它们的点数之和大于10的概率是多少?
右表反映了x与y之间存在某种函数关系,现给出了几种可能的函数关系式:y=x+7,y=x-5, ,
(1)从所给出的几个式子中选出一个你认为满足上表要求的函数表达式: ;(2)请说明你选择这个函数表达式的理由.
列方程解应用题:今年“六•一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?
计算:
如图所示,二次函数()的图像与轴分别交于(,)、(,)两点,且与轴交于点;(1)求该拋物线的解析式,并判断的形状;(2)在轴上方的拋物线上有一点,且以、、、四点为顶点的四边形是等腰梯形,请直接写出点的坐标;(3)在此拋物线上是否存在点P,使得以、、、四点为顶点的四边形是直角梯形?若存在,求(4)出点的坐标;若不存在,说明理由.