如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为18°,且OA=OB=3m.(1)求此时另一端A离地面的距离(结果精确到0.1);(2)跷动AB,使端点A碰到地面,请画出点A运动的路线(保留画图痕迹),并求出点A运动路线的长.(结果保留)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
如图所示,是由几个小立方块所搭几何体的俯视图,小立方块中的数字表示在该位置小立方块的个数。请画出从正面和从左面看到的这个几何体的形状图。 从正面看 从左面看
如图,在平面直角坐标系中,⊙A的半径为1,圆心A点的坐标为(1,﹣2).直线OM是一次函数y=x的图像.让⊙A沿y轴正方向以每秒1个单位长度移动,移动时间为t. (1)填空 ①直线OM与x轴所夹的锐角度数为 °; ②当t= 时,⊙A与坐标轴有两个公共点; (2)当t>3时,求出运动过程中⊙A与直线OM相切时的t的值; (3)运动过程中,当⊙A与直线OM相交所得的弦长为1时,求t的值.
已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.
如图,半圆O的直径AB为40,C,D是这个半圆的三等分点,求弦AC,AD和弧CD围成的阴影部分的面积。
某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg,若每千克每涨1元,月销售量就减少10kg,针对这种水产品的销情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少元?