如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为18°,且OA=OB=3m.(1)求此时另一端A离地面的距离(结果精确到0.1);(2)跷动AB,使端点A碰到地面,请画出点A运动的路线(保留画图痕迹),并求出点A运动路线的长.(结果保留)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
化简求值:,其中.
如图,在平面直角坐标系中,已知抛物线与直线都经过、两点,该抛物线的顶点为.
(1)求此抛物线和直线的解析式;
(2)设直线与该抛物线的对称轴交于点,在射线上是否存在一点,过作轴的垂线交抛物线于点,使点、、、是平行四边形的四个顶点?若存在,求点的坐标;若不存在,请说明理由;
(3)设点是直线下方抛物线上的一动点,当面积最大时,求点的坐标,并求面积的最大值.
如图,线段经过的圆心,交于、两点,,为的弦,连结,,连结并延长交于点,连结交于点.
(1)求证:直线是的切线;
(2)求的半径的长;
(3)求线段的长.
如图,已知反比例函数的图象和一次函数的图象都过点,过点作轴的垂线,垂足为,为坐标原点,的面积为1.
(1)求反比例函数和一次函数的解析式;
(2)设反比例函数图象与一次函数图象的另一交点为,过作轴的垂线,垂足为,求五边形的面积.
如图,为了测得某建筑物的高度,在处用高为1米的测角仪,测得该建筑物顶端的仰角为,再向建筑物方向前进40米,又测得该建筑物顶端的仰角为.求该建筑物的高度.(结果保留根号)