如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为18°,且OA=OB=3m.(1)求此时另一端A离地面的距离(结果精确到0.1);(2)跷动AB,使端点A碰到地面,请画出点A运动的路线(保留画图痕迹),并求出点A运动路线的长.(结果保留)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
已知关于x的两个一元二次方程: 方程①: ; 方程②: . (1)若方程①有两个相等的实数根,求解方程②; (2)若方程①和②中只有一个方程有实数根, 请说明此时哪个方程没有实数根, 并化 简; (3)若方程①和②有一个公共根a, 求代数式的值.
已知△DCE的顶点C在ÐAOB的平分线OP上,CD交OA于F, CE交OB于G. (1)如图1,若CD^ OA, CE^OB, 则图中有哪些相等的线段, 请直接写出你的结论: ; (2)如图2, 若ÐAOB=120°, ÐDCE =ÐAOC, 试判断线段CF与线段CG的数量关系并 加以证明; (3)若ÐAOB=a,当ÐDCE满足什么条件时,你在(2)中得到的结论仍然成立, 请 直接写出ÐDCE满足的条件.
如图, 已知正方形ABCD, 点E在BC边上, 将△DCE绕某点G旋转得到△CBF, 点F恰好在AB边上. (1)请画出旋转中心G (保留画图痕迹) , 并连接GF, GE;(2)若正方形的边长为2a, 当CE= 时, 当CE= 时,.
如图,AB是⊙O的直径,点D在⊙O上, OC∥AD交⊙O于E, 点F在CD延长线上, 且ÐBOC+ÐADF=90°. (1)求证: ; (2)求证:CD是⊙O的切线.
列方程解应用题:在一次同学聚会中,每两名同学之间都互送了一件礼物,所有同学共送了90件礼物,共有多少名同学参加了这次聚会?