如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为18°,且OA=OB=3m.(1)求此时另一端A离地面的距离(结果精确到0.1);(2)跷动AB,使端点A碰到地面,请画出点A运动的路线(保留画图痕迹),并求出点A运动路线的长.(结果保留)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
如图,已知抛物线与轴相交于、两点,与轴交于点,且.设抛物线的顶点为,对称轴交轴于点.
(1)求抛物线的解析式;
(2)为抛物线的对称轴上一点,为轴上一点,且.
①当点在线段(含端点)上运动时,求的变化范围;
②在①的条件下,当取最大值时,求点到线段的距离;
③在①的条件下,当取最大值时,将线段向上平移个单位长度,使得线段与抛物线有两个交点,求的取值范围.
在中,已知是边的中点,是的重心,过点的直线分别交、于点、.
(1)如图1,当时,求证:;
(2)如图2,当和不平行,且点、分别在线段、上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.
(3)如图3,当点在的延长线上或点在的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.
如图,直线与相离,于点,与相交于点,.是直线上一点,连结并延长交于另一点,且.
(1)求证:是的切线;
(2)若的半径为3,求线段的长.
已知关于的一元二次方程.
(1)求证:无论为任何实数,此方程总有两个实数根;
(2)若方程的两个实数根为、,满足,求的值;
(3)若的斜边为5,另外两条边的长恰好是方程的两个根、,求的内切圆半径.
某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据条形统计图中提供的信息,回答下列问题:
(1)张老师抽取的这部分学生中,共有 名男生, 名女生;
(2)张老师抽取的这部分学生中,女生成绩的众数是 ;
(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.