)如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线.(2)当OA=3,AE=4时,求BC的长度.
解方程.
(本小题满分14分)平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(,0),将此平行四边形绕点0顺时针旋转90°,得到平行四边形。(1)若抛物线过点C,A,,求此抛物线的解析式;(2)求平行四边形ABOC和平行四边形重叠部分△的周长;(3)点M是第一象限内抛物线上的一动点,间:点M在何处时△的面积最大?最大面积是多少?并求出此时点M的坐标。
(本小题满分12分)如图,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D。(1)求证:CD为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB的长度.
(本小题满分10分)在复习《反比例函数》一课时,同桌的小明和小芳有一个间题观点不一致,小明认为如果两次分别从l到6六个整数中任取一个数,第一个数作为点的横坐标,第二个数作为点的纵坐标,则点在反比例函数的的图象上的概率一定大于在反比例函数的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?(1)试用列表或画树状图的方法列举出所有点的情形;(2)分别求出点在两个反比例函数的图象上的概率,并说明谁的观点正确。
(本小题满分8分)如图,在梯形ABCD中,DC∥AB,AD=BC, BD平分∠ABC,∠A=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF,求证:△DEF为等边三角形。