如图所示,有一张矩形纸片ABCD,E、F分别是BC、AD上的点(不与顶点重合).如果直线EF将矩形分成面积相等的两部分,那么(1)得到的两个四边形是否相似?若相似,请求出相似比;若不相似,请说明理由;(2)这样的直线可以作多少条?
如图,在直角坐标平面内,为原点,抛物线经过点(,),且顶点(,)在直线上. (1)求的值和抛物线的解析式; (2)如在线段上有一点,满足,在轴上有一点(,),联结,且直线与轴交于点. ①求直线的解析式; ②如点M是直线上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请求出点N的坐标.(直接写出结果,不需要过程.)
如图,在直角梯形ABCD中,AD∥BC,∠A=90o,BD⊥DC,BC=10cm,CD=6cm.在线段、上有动点、,点以每秒的速度,在线段上从点B向点C匀速运动;同时点以每秒的速度,在线段上从点C向点D匀速运动.当点到达点C时,点同时停止运动.设点运动的时间为t(秒). (1)求AD的长; (2)设四边形BFED的面积为,求y 关于t的函数关系式,并写出函数定义域; (3)点、在运动过程中,如与相似,求线段的长.
如图,是⊙的弦,点D是弧AB的中点,过B作AB的垂线交AD的延长线于C.求证:AD=DC.
如图,、两地被一大山阻隔,汽车从地到地须经过地中转.为了促进、两地的经济发展,现计划开通隧道,使汽车可以直接从地到地.已知,,千米.若汽车的平均速度为45千米/时,则隧道开通后,汽车直接从地到地需要多长时间?(参考数据:)
“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图: (1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①; (2)求图②中表示家长“无所谓”的圆心角的度数; (3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少?