如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现① 当时,;② 当时, (2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.
、(本题6分)已知反比例函数的图象与一次函数的图象相交于点(1,5)。(1)求这两个函数的解析式;(2)求这两个函数图象的另一个交点的坐标。
(本小题满分14分) 如图,已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3)。设抛物线的顶点为D,求解下列问题:(1)求抛物线的解析式和D点的坐标;(2)过点D作DF∥轴,交直线BC于点F,求线段DF的长,并求△BCD的面积;(3)能否在抛物线上找到一点Q,使△BDQ为直角三角形?若能找到,试写出Q点的坐标;若不能,请说明理由。
.(本小题满分12分) 如图,已知在⊙O中,直径AB=10,点E是OA上任意一点,过E作弦CD⊥AB,点F是弧BC上一点,连结AF交CE于H,连结AC、CF、BF。(1)请你找出图中的相似三角形,并对其中的一对相似三角形进行证明;(2)若AE:BE=1:4,求CD长。(3)在(2)的条件下,求的值。
在矩形ABCD中,AB=4,BC=10,点M在BC上。(1)若BM=3时,求点D到直线AM的距离;(2)若AM⊥DM,求BM的长。
.(本小题满分10分) 热气球的探测器显示,从热气球A处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,A处与高楼的水平距离为60m,这栋高楼有多高?(结果精确到0.1m,参考数据:)