(本小题满分分)某校高二年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中的男生人数,求X的分布列。
已知函数 (Ⅰ)求f(x)的最小正周期,并求其图象对称中心的坐标; (Ⅱ)当时,求函数f(x)的值域.
(本小题满分l4分) 已知函数f(x)=ax3+bx2-3x在x=±1处取得极值. (1)求函数f(x)的解析式; (2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有 |f(x1)-f(x2)|≤4; (3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
(本小题满分l2分) 已知函数f(x)=a- (1)求证:函数y=f(x)在(0,+∞)上是增函数; (2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.
(本小题满分l2分) 运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假 设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元. (1)求这次行车总费用y关于x的表达式; (2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
(本小题满分l2分) 若函数y=为奇函数. (1)求a的值; (2)求函数的定义域; (3)讨论函数的单调性.