设正项数列{an}(n≥5)对任意正整数k(k≥3)恒满足:,且.(1)求数列{an}的通项公式;(2)是否存在整数,使得对于任意正整数n恒成立?若存在,求出的值;若不存在,说明理由。(注:)
已知圆O的内接△ABC中,D为BC上一点,且△ADC为正三角形,点E为BC的延长线上一点,AE为圆O的切线,求证:CD2=BD·EC.
已知a,b是不相等的正数,在a,b之间分别插入m个正数a1,a2, ,am和正数b1,b2, ,bm,使a,a1,a2, ,am,b是等差数列,a,b1,b2, ,bm,b是等比数列.(1)若m=5,=,求的值;(2)若b=λa(λ∈N*,λ≥2),如果存在n (n∈N*,6≤n≤m)使得an-5=bn,求λ的最小值及此时m的值;(3)求证:an>bn(n∈N*,n≤m).
已知函数f(x)=lnx-mx(mR).(1)若曲线y=f(x)过点P(1,-1),求曲线y=f(x)在点P处的切线方程;(2)求函数f(x)在区间[1,e]上的最大值;(3)若函数f(x)有两个不同的零点x1,x2,求证:x1x2>e2.
已知椭圆C:=1(a>b>0)过点P(-1,-1),c为椭圆的半焦距,且c=b.过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线l1的斜率为-1,求△PMN的面积;(3)若线段MN的中点在x轴上,求直线MN的方程.
某种树苗栽种时高度为A(A为常数)米,栽种n年后的高度记为f(n).经研究发现f(n)近似地满足 f(n)=,其中,a,b为常数,n∈N,f(0)=A.已知栽种3年后该树木的高度为栽种时高度的3倍. (1)栽种多少年后,该树木的高度是栽种时高度的8倍;(2)该树木在栽种后哪一年的增长高度最大.