如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B 两点,将△AOB绕点O逆时针旋转90°,得到△COD,(1)若l:,E为AD的中点,①在CD上有一动点F ,求当△DEF与△COD相似时点F的坐标;②如图②,过E作x轴的垂线a,在直线a上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点坐标;若不存在,请说明理由(2)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l的函数解析式.
如图1,矩形的顶点为原点,点在上,把沿折叠,使点落在边上的点处,点坐标分别为和,抛物线过点.求两点的坐标及该抛物线的解析式;如图2,长、宽一定的矩形的宽,点沿(1)中的抛物线滑动,在滑动过程中轴,且在的下方,当点横坐标为-1时,点距离轴个单位,当矩形在滑动过程中被轴分成上下两部分的面积比为2:3时,求点的坐标;如图3,动点同时从点出发,点以每秒3个单位长度的速度沿折线按的路线运动,点以每秒8个单位长度的速度沿折线按的路线运动,当两点相遇时,它们都停止运动.设同时从点出发秒时,的面积为.①求出与的函数关系式,并写出的取值范围:②设是①中函数的最大值,那么= .
如图,直线分别交轴、轴于B、A两点,抛物线L:的顶点G在轴上,且过(0,4)和(4,4)两点.求抛物线L的解析式;抛物线L上是否存在这样的点C,使得四边形ABGC是以BG为底边的梯形,若存在,请求出C点的坐标,若不存在,请说明理由.将抛物线L沿轴平行移动得抛物线L,其顶点为P,同时将△PAB沿直线AB翻折得到△DAB,使点D落在抛物线L上. 试问这样的抛物线L是否存在,若存在,求出L对应的函数关系式,若不存在,说明理由.
已知,抛物线与x轴交于和两点,与y轴交于。求这条抛物线的解析式和抛物线顶点M的坐标求四边形ABMC的面积;在对称轴的右侧的抛物线上是否存在点P,使为直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,请说明理由
如图,已知抛物线与轴交于点,与轴交与A、B两点(点A在点B的左侧),且OA=1,OC=2求抛物线的解析式及对称轴点E是抛物线在第一象限内的一点,且,求点E的坐标;在抛物线的对称轴上,是否存在点P,使得为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。
已知:如图①,在中,,,,点 由出发沿方向向点匀速运动,速度为1cm/s;点由出发沿方向向点匀速运动,速度为2cm/s;连接.若设运动的时间为(),解答下列问题当为何值时,?设的面积为(),求与之间的函数关系式;是否存在某一时刻,使线段恰好把的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;如图②,连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.