如图,在四棱锥中,平面PAD⊥平面ABCD, ,,E是BD的中点.(Ⅰ)求证:EC//平面APD;(Ⅱ)求BP与平面ABCD所成角的正切值;(Ⅲ)求二面角的正弦值.
已知数列的前项和是,且. (1)求数列的通项公式; (2)设,求适合方程的正整数的值.
四棱锥底面是平行四边形,面面,,,分别为的中点. (1)求证:; (2)求二面角的余弦值.
若盒中装有同一型号的灯泡共只,其中有只合格品,只次品。 (1) 某工人师傅有放回地连续从该盒中取灯泡次,每次取一只灯泡,求次取到次品的概率; (2) 某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡所用灯泡只数的分布列和数学期望.
已知函数. (1)求函数的最小正周期和最值; (2)求函数的单调递减区间.
设函数. (1)若时,求处的切线方程; (2)当时,,求的取值范围.