(本小题满分12分)某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为,经测量米,米,米,.(Ⅰ)求的长度;(Ⅱ)若环境标志的底座每平方米造价为5000元,不考虑其他因素,小李、小王谁的设计使建造费用较低(请说明理由)?较低造价为多少?()
(本小题满分12分) 已知椭圆的左、右焦点分别为、,离心率,右准线方程为. (I)求椭圆的标准方程; (II)过点的直线与该椭圆交于M、N两点,且,求直线的方程.
(本小题满分12分)(文科做前两问;理科全做.) 某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换. (I)在第一次灯棍更换工作中,求不需要更换灯棍的概率; (II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率; (III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.
(本小题满分12分) 已知等比数列中,,,且公比. (Ⅰ)求数列的通项公式; (Ⅱ)设,求的最大值及相应的值.
(本小题满分12分) 如图所示,在正三棱柱中,,,是的中点,在线段上且. (I)证明:面; (II)求二面角的大小.
(本小题满分10分) 在△ABC中,、、分别是角、、所对的边.已知. (Ⅰ)求的大小; (Ⅱ)若,△ABC的面积为,求的值.