(本小题满分10分)已知直线l经过点P(1,1),倾斜角.(Ⅰ)写出直线l的参数方程(Ⅱ)设l与圆x2+y2=4相交与两点A、B,求点P到A、B两点的距离之积.
如图,正方形所在平面与圆所在平面相交于,线段为圆的弦,垂直于圆所在平面,垂足是圆上异于、的点,,圆的直径为9 (Ⅰ)求证:平面平面; (Ⅱ)求二面角的平面角的正切值。
.(本小题满分14分) 已知数列的首项,,其中。 (Ⅰ)求证:数列为等比数列; (Ⅱ)记,若,求最大的正整数。
已知向量,设函数。 (Ⅰ)求的最小正周期与单调递减区间; (Ⅱ)在中,、、分别是角、、的对边,若的面积为,求的值。
已知函数. ⑴若,解方程; ⑵若,求的单调区间; ⑶若存在实数,使,求实数的取值范围 .
已知定义域为R的函数是奇函数。 ⑴求的值;并判定函数单调性(不必证明)。 ⑵若对于任意的,不等式恒成立,求的取值范围。