(本小题满分14分)已知函数.(1)若函数在处的切线的斜率为3,求的值;(2)若函数在区间[1,2]上为增函数,求的取值范围。
((本小题满分12分) 如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=. (Ⅰ)求面ASD与面BSC所成二面角的大小; (Ⅱ)设棱SA的中点为M,求异面直线DM与 SB所成角的大小; (Ⅲ)求点D到平面SBC的距离.
((本小题满分12分) 已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2. (Ⅰ)求椭圆的方程; (Ⅱ)设直线过且与椭圆相交于A,B两点,当P是AB的中点时, 求直线的方程.
(本小题满分12分) 设,求直线AD与平面的夹角。
已知命题若是的充分不必要条件,求的取值范围
(本小题分) 设是数列的前项和,点在直线上. (Ⅰ)求数列的通项公式; (Ⅱ)记,数列的前项和为,求使的的最小值; (Ⅲ)设正数数列满足,求数列中的最大项.