已知数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).(1)设bn=an+1-an(n∈N*),证明{bn}是等比数列; (2)求数列{an}的通项公式;(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.直线的参数方程是(为参数),曲线的极坐标方程为.(Ⅰ)求曲线的直角坐标方程;(Ⅱ)设直线与曲线相交于,两点,求,两点间的距离.
如图,△内接于⊙,,直线切⊙于点,弦,相交于点.(Ⅰ)求证:△≌△;(Ⅱ)若,求长.
设函数(Ⅰ)时,求的单调区间;(Ⅱ)当时,设的最小值为恒成立,求实数t的取值范围.
在平面直角坐标系中,设点,坐标原点在以线段为直径的圆上(Ⅰ)求动点的轨迹C的方程;(Ⅱ)过点的直线与轨迹C交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.
某校为了解高一年级学生身高情况,按10%的比例对全校700名高一学生按性别进行抽样检查,测得身高频数分布表如下:表1:男生身高频数分布表
表2:女生身高频数分布表
(Ⅰ)求该校高一男生的人数;(Ⅱ)估计该校高一学生身高(单位:cm)在[165,180)的概率;(Ⅲ)在男生样本中,从身高(单位:cm)在[180,190)的男生中任选3人,设ξ表示所选3人中身高(单位:cm)在[180,185)的人数,求ξ的分布列和数学期望.