已知数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).(1)设bn=an+1-an(n∈N*),证明{bn}是等比数列; (2)求数列{an}的通项公式;(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.
本小题满分14分)若不等式对恒成立,求的最小值.
.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。 (1)求证:AC⊥SD; (2)若SD⊥平面PAC,求二面角P-AC-D的大小 (3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。
.如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=40° (1)求证:EF⊥平面BCE; (2)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE (3)求二面角F—BD—A的大小。
在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=A,AB=2,以AC的中点O为球心、AC为直径的球面交PD于点M。 (1)求证:平面ABM⊥平面PCD; (2)求直线CD与平面ACM所成的角的大小;
已知△ABC的面积S满足 (Ⅰ)求θ的取值范围; (Ⅱ)求函数的最大值。