在平面直角坐标系中,抛物线与轴交于点A(-3,0)B(1,0)两点, D是抛物线顶点,E是对称轴与x轴的交点.(1)求抛物线的解析式;(2)若点F和点D关于轴对称, 点P是x轴上的一个动点,过点P作PQ∥OF交抛物线于点Q,是否存在以点O、F、P、Q为顶点的平行四边形?若存在,求出点P坐标;若不存在,请说明理由.
在Rt△POQ中,OP=OQ=4,M是PQ中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B. (1)求证:MA=MB; (2)连结AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
如图,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度,斜坡BD的长是50米,在山坡的坡底B处测得铁架顶端A的仰角为45°,在山坡的坡顶D处测得铁架顶端A的仰角为. (1)求小山的高度; (2)求铁架的高度.
某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图). 请你根据图中提供的信息,回答下列问题: (1)求出扇形统计图中a的值,并求出该校初一学生总数; (2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图; (3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数; (4)在这次抽样调查中,众数和中位数分别是多少? (5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?
如图,在△ABC中,∠C=90°,∠A=30°. (1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明); (2)连结BD,求证:BD平分∠CBA.
求不等式组的正整数解.