如图,点P是菱形ABCD的对角线BD上的一点,连接CP并延长 ,交AD于E,交BA的延长线于F。(1)求证:∠DCP=∠DAP.(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长。
如图,在△ ABC中,∠ C=90°,∠ ABC的平分线交 AC于点 E,过点 E作 BE的垂线交 AB于点 F,⊙ O是△ BEF的外接圆.
(1)求证: AC是⊙ O的切线;
(2)过点 E作 EH⊥ AB,垂足为 H,求证: CD= HF;
(3)若 CD=1, EH=3,求 BF及 AF长.
如图,一次函数 y= ax+ b的图象与反比例函数 y= ( x>0)的图象交于点 P( m,4),与 x轴交于点 A(﹣3,0),与 y轴交于点 C, PB⊥ x轴于点 B,且 AC= BC.
(1)求反比例函数与一次函数的解析式;
(2)反比例函数图象上是否存在点 D,使四边形 BCPD为菱形?如果存在,求出点 D的坐标;如果不存在,说明理由.
如图,分别以Rt△ ABC的直角边 AC及斜边 AB向外作等边△ ACD及等边△ ABE,已知∠ ABC=60°, EF⊥ AB,垂足为 F,连接 DF.
(1)求证:△ ABC≌△ EAF;
(2)试判断四边形 EFDA的形状,并证明你的结论.
张老师为了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类, A:很好; B:较好; C:一般; D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)张老师一共调查了多少名同学?
(2) C类女生有多少名? D类男生有多少名?并将两幅统计图补充完整;
(3)为了共同进步,张老师想从被调查的 A类和 D类学生中各随机选取一位学生进行"一帮一"互助学习,请用列表法或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
某射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了8次测试,测试成绩(单位:环)如下表:
第一次
第二次
第三次
第四次
第五次
第六次
第七次
第八次
甲
10
8
9
乙
7
(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;
(2)分别计算甲、乙两名运动员8次测试成绩的方差;
(3)根据(1)(2)计算的结果,你认为推荐谁参加全国比赛更合适,并说明理由.