(本小题满分12分)如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为的中点.(Ⅰ)求证: ;(Ⅱ)在棱上是否存在一点,使得四点共面?若存在,指出点的位置并证明;若不存在,请说明理由;(Ⅲ)求点到平面的距离.
已知函数 (Ⅰ)判断函数的奇偶性,并加以证明; (Ⅱ)用定义证明在上是减函数; (Ⅲ)函数在上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).
设集合,,. (Ⅰ)若,求实数的取值范围; (Ⅱ)若且,求实数的取值范围.
(1) (2)
已知函数。利用函数构造一个数列,方法如下:对于定义域中给定的,令,… 如果取定义域中任一值作为,都可以用上述方法构造出一个无穷数列。 (1)求实数a的值; (2)若,求的值; (3)设,试问:是否存在n使得成立,若存在,试确定n及相应的的值;若不存在,请说明理由。
已知数列{an}中,a1=,an+1=(n∈N*). (1)求证:数列{}是等差数列,并求{an}的通项公式; (2)设bn+an=l(n∈N*),S=b1b2+b2b3+…+bnbn+1,试比较an与8Sn的大小.