如图:是=的导函数的简图,它与轴的交点是(1,0)和(3,0)(1)求的极小值点和单调减区间; (2)求实数的值.
已知函数(1)当时,求函数取得最大值和最小值时的值;(2)设锐角△ABC的内角A、B、C的对应边分别是a,b,c,且a=1,c∈N*,若向量与向量平行,求c的值.
设函数(为自然对数的底数),(1)证明:;(2)当时,比较与的大小,并说明理由;(3)证明:().
设椭圆E中心在原点,焦点在x轴上,短轴长为4,点Q(2,)在椭圆上.(1)求椭圆E的方程;(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围.(3)过M()的直线:与过N()的直线:的交点P()在椭圆E上,直线MN与椭圆E的两准线分别交于G,H两点,求的值.
如图,在四棱锥中,//,,,,平面平面.(1)求证:平面平面;(2)若直线与平面所成的角的正弦值为,求二面角的平面角的余弦值.
某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3, ,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)求员工甲抽奖一次所得奖金ξ的分布列与期望; (2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?