(本小题满分13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在一次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;(Ⅱ)求在两次游戏中获奖次数的分布列.
今有形状,大小相同的10个球,其中红球4个,白球5个,黑球1个,若从中取出4个小球,使各种颜色的球都有的不同取法有多少种?
如图,正四棱柱中,,点在上且. (Ⅰ)证明:平面; (Ⅱ)求二面角的大小.
(本小题满分12分) 设分别为椭圆()的左、右焦点,过F2的 直线l与椭圆C相交于A、B两点,直线l的倾斜角为600,F1到直线l的 距离为. ⑴求椭圆C的焦距; ⑵如果,求椭圆C的方程.
(本小题满分12分) 已知函数的图象在处的切线与轴平行. (1)求与的关系式及f(x)的极大值; (2)若函数在区间上有最大值为,试求的值.