已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45º. (1)求BD的长; (2)求图中阴影部分的面积.
已知二次函数y =" x2" -4x +3.(1)用配方法将y =" x2" -4x +3化成y =" a(x" -h) 2 + k的形式;(2)在所给的平面直角坐标系中,画出这个二次函数的图象;(3)根据图象回答:当自变量x的取值范围满足什么条件时,y<0?
在如图所示的平面直角坐标系中,△OAB的三个顶点坐标分别为O(0,0),A(1,-3),B(3,-2).(1)将△OAB绕原点O逆时针旋转90°,画出旋转后的△OA’ B’;(2)求出点B到点B’ 所走过的路径的长.
已知二次函数y =" ax2" +bx +c中,函数y与自变量x的部分对应值如下表:
(1)求这个二次函数的解析式;(2)写出这个二次函数的顶点坐标
计算:
如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;