某校组织了一批学生随机对部分市民就是否吸烟以及吸烟和非吸烟人群对他人在公共场所吸烟的态度(分三类:A表示主动制止;B表示反感但不制止,C表示无所谓)进行了问卷调查,根据调查结果分别绘制了如下两个统计图。请根据图中提供的信息解答下列问题: (1)图1中,"吸烟"类人数所占扇形的圆心角的度数是多少? (2)这次被调查的市民有多少人? (3)补全条形统计图 (4)若该市共有市民760万人,求该市大约有多少人吸烟?
如图,有足够多的边长为a的大正方形、长为a宽为b的长方形以及边长为b的小正方形.(1)取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(a+b)(a+2b),画出图形,并根据图形回答(a+b)(a+2b)= .(2)取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+4b2,①需要A类卡片 张、B类卡片 张、C类卡片 张.②可将多项式a2+5ab+4b2分解因式为 .
已知(x2+mx+n)(x+1)的结果中不含x2项和x项,求m,n的值.
我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b)(a+b)=2a2+3ab+b2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式: .(2)试画出一个图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2.
心理学家研究发现,在一节45分钟的课中,学生的注意力随教师讲课的时间的变化而变化,开始学生的注意力逐渐增强,中间学生的注意力保持稳定的状态,随后开始分散,经实验学生的注意力指数y随时间x(分钟)的变化规律如图所示.(1)一位教师为了达到最好的上课效果,准备课前复习,要求学生的注意力指数至少达到30时,开始上新课,问他应该复习多长时间?(2)如果(1)的这位教师本节新课内容需要22分钟,为了使学生的听课效果最好,问这位教师能否在学生听课效果最好时,讲完新课内容?
如图,已知一次函数y1=x+m(m为常数)的图象与反比例函数 (k为常数,k≠0)的图象相交于点 A(1,3).(1)求这两个函数的解析式及其图象的另一交点B的坐标;(2)点C(a,b)在反比例函数 的图象上,求当1≤a≤3时,b的取值范围;(3)观察图象,写出使函数值y1≥y2的自变量x的取值范围.