如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?
如图,已知四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:OA=OB;若∠CAB=35°,求∠CDB的度数.
已知二次函数y=ax2+bx+c,当x=-1时有最小值-4,且图象在x轴上截得线段长为4,求函数解析式.
已知二次函数y=ax2+bx+2,它的图像经过点(1,2).如果用含a的代数式表示b,那么b= ;如图所示,如果该图像与x轴的一个交点为(-1,0).① 求二次函数的表达式,并写出图像的顶点坐标;②在平面直角坐标系中,如果点P到x轴与y轴的距离相等,则称点P为等距点.求出这个二次函数图像上所有等距点的坐标.当a取a1,a2时,二次函数图像与x轴正半轴分别交于点M(m,0),点N(n,0).如果点N在点M的右边,且点M和点N都在点(1,0)的右边.试比较a1和a2的大小.
如图,在△ABC中,AB=AC=10,BC=16,M为BC的中点.⊙A的半径为3,动点O从点B出发沿BC方向以每秒1个单位的速度向点C运动,设运动时间为t秒.当以OB为半径的⊙O与⊙A相切时,求t的值;探究:在线段BC上是否存在点O,使得⊙O与直线AM相切,且与⊙A相外切.若存在,求出此时t的值及相应的⊙O的半径;若不存在,请说明理由.
已知AB=AC,DB=DE,∠BAC=∠BDE=α.如图1,α=60°,探究线段CE与AD的数量关系,并加以证明;如图2,α=120°,探究线段CE与AD的数量关系,并说明理由;如图3,结合上面的活动经验探究线段CE与AD的数量关系为__________ .(直接写出答案).