如图,二次函数y=a+bx+c的图象交x轴于A、B两点,交y轴于点C.且B(1,0),若将△BOC绕点O逆时针旋转90°,所得△DOE的顶点E恰好与点A重合,且△ACD的面积为3.(1)求这个二次函数的关系式.(2)设这个二次函数图象的顶点为M,请在y轴上找一点P,使得△PAM的周长最小,并求出点P的坐标.(3)设这个函数图象的对称轴l交x轴于点N,问:A、M、C、D、N这5个点是否会在同一个圆上?若在同一个圆上,请求出这个圆的圆心坐标,并作简要说明;若不可能,请说明理由.
如图所示,由5个大小完全相同的小正方形摆成如图形状,请按要求作图.(1)在图1中补画一个小正方形,使它成为一个轴对称图形,且对称轴只有1条;(2)在图2中补画一个小正方形,使它成为一个轴对称图形,且对称轴多于1条;(3)在图3中补画一个小正方形,使它成为一个中心对称图形,但不是轴对称图形.
如图,在菱形ABCD中,点E,F分别为边BC,CD的中点,连接AE,AF.求证:△ABE≌△ADF.
(1)计算:;(2)化简:.
如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0)若抛物线过A.B两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PBO=∠POB? 若存在求出P的坐标,不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB面积为S,求S的最大(小)值.
如图,已知直线PA交⊙O于A.B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CDPA⊥,垂足为D. (1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.