如图,在矩形ABCD中,AB=6cm,BC=8cm.如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为2cm/s和1cm/s.FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t(s)(0<t<4).(1)连结EF、DQ,若四边形EQDF为平行四边形,求t的值;(2)连结EP,设△EPC的面积为ycm2,求y与t的函数关系式,并求y的最大值;(3)若△EPQ与△ADC相似,请直接写出t的值.
某校九年级有200名学生参加了全国初中数学联合竞赛的初赛,为了了解本次初赛的成绩情况,从中抽取了50名学生,将他们的初赛成绩(得分为整数,满分为100分)分成五组:第一组49.5~59.5;第二组59.5~69.5;第三组69.5~79.5;第四组79.5~89.5;第五组89.5~100.5.统计后得到右图所示的频数分布直方图(部分).观察图形的信息,回答下列问题:第四组的频数为 (直接写答案).若将得分转化为等级,规定:得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”.那么这200名参加初赛的学生中,参赛成绩评为“D”的学生约有________个(直接填写答案).若将抽取出来的50名学生中成绩落在第四、第五组的学生组成一个培训小组,再从这个培训小组中随机挑选2名学生参加决赛.用列表法或画树状图法求:挑选的2名学生的初赛成绩恰好都在90分以上的概率.
化简,求值:),其中m=.
如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F。求证:△ABE≌△CDF;若AC与BD交于点O, 求证:AO=CO
如图所示,秋千链子的长度为3m,静止时的秋千踏板(大小忽略不计)距地面0.5m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为,则秋千踏板与地面的最大距离约为多少?(参考数据:≈0.8, ≈0.6)
小明和小华要到离学校15千米的图书馆看书.小明先骑自行车从学校出发,15分钟后,小华乘公交车从同一地点出发,结果两人同时到达图书馆.已知公交车的速度是自行车速度的1.5倍,求自行车的速度.