(本小题满分12分)已知数列是等比数列,且,.(1)求数列的通项公式;(2)设,求数列的前项和.
(本小题满分12分)在△中,角所对边分别为,且.(1)求角A;(2)若, =,,试求的取值范围.
(1)如图,向量被矩阵M作用后分别变成,(Ⅰ)求矩阵M;(Ⅱ)并求在M作用后的函数解析式;(2)已知在直角坐标系x0y内,直线l的参数方程为 .以Ox为极轴建立极坐标系,曲线C的极坐标方程为.若C与L的交点为P,求点P与点A(-2,0)的距离|PA|。
已知函数. (Ⅰ)求的极值; (II)判断y=f(x)的图像是否是中心对称图形,若是求出对称中心并证明,否则说明理由; (III)设的定义域为,是否存在.当时,的取值范围是?若存在,求实数、的值;若不存在,说明理由
已知椭圆的左、右焦点分别为F1、F2,短轴端点分别为A、B,且四边形F1AF2B是边长为2的正方形(I)求椭圆的方程;(II)若C、D分别是椭圆长轴的左、右端点,动点M满足,连结CM交椭圆于P,证明为定值(O为坐标原点);(III)在(II)的条件下,试问在x轴上是否存在异于点C的定点Q,使以线段MP为直径的圆恒过直线DP、MQ的交点,若存在,求出Q的坐标,若不存在,说明理由
某投资公司在2010年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利,也可能亏损,且这两种情况发生的概率分别为和;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利,可能亏损,也可能不赔不赚,且这三种情况发生的概率分别为、和(Ⅰ)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由;(Ⅱ)若市场预期不变,该投资公司按照你选择的项目长期投资(每一年的利润和本金继续用作投资),问大约在哪一年的年底总资产(利润+本金)可以翻一番?(参考数据:,)