如图,抛物线y=-x2+(m+2)x-3(m-1)交x轴于A、B,交y轴于C.直线y=(m+1)x-3经过点A.(1)求抛物线的解析式;(2)点Q为线段AB上的动点,过点Q作QE∥AC,交BC于E,连CQ.当S△CQE的面积最大时,求点Q的坐标;(3)直线y=kx(k<0)交直线y=(m+1)x-3于P,交抛物线y=-x2+(m+2)x-3(m-1)于点M,过M作x轴的垂线,垂足为D,交直线y=(m+1)x-3于N.△PMN能否为等腰三角形?若能,求k的值;若不能,说明理由.
将四边形放大2倍. 要求:(1)对称中心在两个图形的中间,但不在图形的内部. (2)对称中心在两个图形的同侧. (3)对称中心在两个图形的内部.
画出下列图形的位似中心.
设一个点只落在平面直角坐标系上由x轴、y轴及直线x+y=2所围成的三角形内(包括边界),并且落在这个三角形内任何区域的可能性相等。 (1)求此点落在直线的左边的概率是多少? (2)求此点落在直线与直线之间的概率是多少?
如图,某居民小区内两楼之间的距离米,两楼的高都是20米,楼在楼正南,楼窗户朝南。楼内一楼住户的窗台离小区地面的距离米,窗户高米。当正午时刻太阳光线与地面成角时,楼的影子是否影响楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由。(参考数据:,,)
如图,AC为⊙O的直径,AC=4,B、D分别在AC两侧的圆上,∠BAD=60°,BD与AC的交点为E. (1)求点O到BD的距离及∠OBD的度数; (2)若DE=2BE,求的值和CD的长.