某校部分男生分3组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如下.(1)求训练后第一组平均成绩比训练前增长的百分数;(2)小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均成绩不可能提高3个这么多.”你同意小明的观点吗?请说明理由;(3)你认为哪一组的训练效果最好?请提供一个解释来支持你的观点.
解方程:
在平面直角坐标中,直线(为常数且≠0),分别交轴,轴于点、、⊙的半径为个单位长度,如图,若点在轴正半轴上,点在轴的正半轴上,且。 (1)求的值。 (2)若=4,点P为直线上的一个动点过点作⊙的切线、切点分别为、。当⊥时,求点的坐标。
如下图,为⊙的弦,⊥于交⊙于,⊥于,∠=2∠=60o. (1)求证,为⊙的切线; (2)当=6时,求阴影部分的面积。
某公司研制出一种新颖的家用小电器,每件的生产成本为18元,经市场调研表明,按定价40元出售,每日可销售20件.为了增加销量,每降价1元,日销售量可增加2件.问将售价定为多少元时,才能使日利润最大?求最大利润.
设点的坐标(,),其中横坐标可取-1,2,纵坐标可取-1, 1,2, (1)求出点的坐标的所有等可能结果(用树形图或列表法求解); (2)求点与点(1,-1)关于原点对称的概率。