已知曲线C:(1)求证:曲线C上的各点处的切线的斜率小于1;(2)求曲线C上斜率为0的切线方程.
已知椭圆的中心为原点,焦点在轴上,离心率为,且经过点,直线交椭圆于异于M的不同两点.直线轴分别交于点. (1)求椭圆标准方程;(2)求的取值范围; (3)证明是等腰三角形.
若和分别表示数列和数列的前项和,对任意正整数,有,.(1)求数列的通项公式;(2),,求的最小值.
如图,四棱锥中,,是矩形, 是棱的中点,,.(1)证明; (2)求直线与平面所成角的正弦值.
已知函数.(1)求函数的单调递减区间;(2)设的最小值是,求的最大值.
如图,地在高压线(不计高度)的东侧0.50km处,地在地东北方向1.00km处,公路沿线上任意一点到地与高压线的距离相等.现要在公路旁建一配电房向、两地降压供电(分别向两地进线).经协商,架设低压线路部分的费用由、两地用户分摊, 为了使分摊费用总和最小,配电房应距高压线