如图,在平面直角坐标系中,已知抛物线交轴于两点,交轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交轴于点E、F两点,求劣弧的长;(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.
解下列方程(第1小题4分,第2小题5分,本题满分9分) (1)2x-(5x+16)=3-2(3x-4); (2)+=1.
计算:(第1小题3分,第2小题5分,本题满分8分) (1)去括号,合并同类项:x-2(x-y)+(2x-3y); (2)先化简,再求值:(-4x+2x-8)-(x-1),其中x=-1.
(本小题满分4分)马小虎准备制作一个封闭的正方体纸盒子,他先用5个大小一样的正方形纸板制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,需要在给出的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体纸盒子。请你帮助马小虎画上所拼接的正方形。(要求:①画出两种不同的拼接法;②添加的正方形用阴影表示)
已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF. (1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD; (2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由; (3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.
如图,在平行四边形中,对角线AC⊥BC,AC=BC=2,动点P从点A出发沿AC向终点C移动,过点P分别作PM∥AB交BC于M,PN∥AD交DC于N.连结AM. (1)四边形PMCN的形状有可能是菱形吗?请说明理由 (2)当AP=1时, 试求出四边形PMCN的面积。