(本小题满分14分)已知函数,,且函数与的图象至多有一个公共点。(Ⅰ)证明:当时,;(Ⅱ)若不等式对题设条件中的总成立,求的最小值.
“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4(尾/立方米)时,的值为(千克/年);当时,是的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年).(1)当时,求函数的表达式;(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.
已知圆,直线与圆相交于两点,且A点在第一象限.(1)求;(2)设()是圆上的一个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线与轴分别交于和.问是否为定值?若是,求出定值,若不是,说明理由.
如图,△是等边三角形, ,,,,分别是,,的中点,将△沿折叠到的位置,使得. (1)求证:平面平面;(2)求证:平面.
通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:性别与看营养说明列联表 单位: 名
(1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为10的样本,问样本中看与不看营养说明的女生各有多少名?(2)根据以上列联表,能否在犯错误的概率不超过0.01的前提下认为性别与是否看营养说明之间有关系? 下面的临界值表供参考:
(参考公式:,其中)
已知 (1)求的最小值(2)由(1)推出的最小值C(不必写出推理过程,只要求写出结果)(3)在(2)的条件下,已知函数若对于任意的,恒有成立,求的取值范围.