已知函数在[1,+∞)上为增函数,且,,∈R.(1)求θ的值;(2)若在[1,+∞)上为单调函数,求m的取值范围;(3)设,若在[1,e]上至少存在一个,使得成立,求的取值范围.
(本小题满分12分) 已知双曲线的离心率为,右准线方程为 (1)求双曲线的方程; (2)设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.
(本小题满分13分) 已知函数,存在实数满足下列条件: ①;②;③ (1)证明:; (2)求b的取值范围.
(本小题满分13分) 已知圆满足: ①截y轴所得弦长为2; ②被x轴分成两段圆弧,其弧长的比为3:1; ③圆心到直线l:x-2y=0的距离为,求该圆的方程.
(本小题满分13分) 已知且,求: (1)的最小值; (2)若直线与轴、轴分别交于、,求(O为坐标原点)面积的最小值.
(本小题满分14分)设函数f(x) =" x2" + bln(x+1), (1)若对定义域的任意x,都有f(x)≥f(1)成立,求实数b的值; (2)若函数f(x)在定义域上是单调函数,求实数b的取值范围; (3)若b = -1,,证明对任意的正整数n,不等式都成立