在平面直角坐标系xOy中,直线分别与x轴,y轴交于过点A,B,点C是第一象限内的一点,且AB=AC,AB⊥AC,抛物线经过A,C两点,与轴的另一交点为D.(1)求此抛物线的解析式; (2)判断直线AB与CD的位置关系,并证明你的结论;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,B,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
(本题8分)计算:(1) (2)2a(2a-b)+ (b+a)(b-a)
(本题8分)解方程组:(1) (2)
(本题10分)如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P,Q同时出发,当点Q运动到点C时,P,Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P,Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.
(本题8分)某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要赢利1200元,且让顾客得到实惠,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,则每件衬衫应降价多少元?
(本题8分)某校初三(1)班进行立定跳远训练,以下是李超和陈辉同学六次的训练成绩(单位:m)
(1)李超和陈辉的平均成绩分别是多少?(2)分别计算两人的六次成绩的方差,哪个人的成绩更稳定?为什么?(3)若预知参加级的比赛能跳过2.55米就可能得冠军,应选哪个同学参加?为什么?