某城市对教师试卷讲评课中学生参与的深度与广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图(图1,图2),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了 名学生;(2)请将条形图补充完整;(3)在扇形统计图中,“主动质疑”所对应的扇形圆心角度数为 ;(4)如果全市有16万名初中学生,那么在试卷评讲课中,“独立思考”的学生约有多少万人?
如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点. (1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法). (2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A,B两点的勾股点的个数. (3)如图2,矩形ABCD中,AB=12cm,BC=4cm,DM=8cm,AN=5cm.动点P从D点出发沿着DC方向以1 cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s) ,点H为M,N两点的勾股点,且点H在直线l上. ①当t=4时,求PH的长. ②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).
如图,在平面直角坐标系中,已知点A(0,1)、B(3,5),以AB为边作如图所示的正方形ABCD,顶点在坐标原点的抛物线恰好经过点D,P为抛物线上的一动点. (1)直接写出点D的坐标; (2)求抛物线的解析式; (3)求点P到点A的距离与点P到x轴的距离之差; (4)当点P位于何处时,△APB的周长有最小值, 并求出△APB的周长的最小值.
已知如图1,Rt△ABC和Rt△ADE的直角边AC和AE重叠在一起,AD=AE,∠B=30°,∠DAE=∠ACB=90°. (1)如图1,填空:∠BAD= ;= ; (2)如图2,将△ADE绕点A顺时针旋转,使AE到AB边上,∠ACH=∠BCH,连接BH,求∠CBH的度数; (3)如图3,点P是BE上一点,过A、E两点分别作AN⊥PC、EM⊥PC,垂足分别为N、M,若EM=2,AN=5,求△AND的面积.
如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E. ⊙O的切线BF与弦AD的延长线相交于点F,且AD=3,cos∠BCD=. (1)求证:CD∥BF; (2)求⊙O的半径; (3)求弦CD的长.
如图,一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?