已知方程组的解满足方程求m的值?
如图,在平面直角坐标系中,二次函数 y = a x 2 + 4 x - 3 图象的顶点是 A ,与 x 轴交于 B , C 两点,与 y 轴交于点 D .点 B 的坐标是 ( 1 , 0 ) .
(1)求 A , C 两点的坐标,并根据图象直接写出当 y > 0 时 x 的取值范围.
(2)平移该二次函数的图象,使点 D 恰好落在点 A 的位置上,求平移后图象所对应的二次函数的表达式.
图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条 AB = AC = 50 cm , ∠ ABC = 47 ° .
(1)求车位锁的底盒长 BC .
(2)若一辆汽车的底盘高度为 30 cm ,当车位锁上锁时,问这辆汽车能否进入该车位?
(参考数据: sin 47 ° ≈ 0 . 73 , cos 47 ° ≈ 0 . 68 , tan 47 ° ≈ 1 . 07 )
图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:
(1)使得4个阴影小等边三角形组成一个轴对称图形.
(2)使得4个阴影小等边三角形组成一个中心对称图形.
(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)
(1)计算: ( a + 1 ) 2 + a ( 2 - a ) .
(2)解不等式: 3 x - 5 < 2 ( 2 + 3 x ) .
如图,在平面直角坐标系中,正方形 ABOC 的两直角边分别在坐标轴的正半轴上,分别过 OB , OC 的中点 D , E 作 AE , AD 的平行线,相交于点 F ,已知 OB = 8 .
(1)求证:四边形 AEFD 为菱形.
(2)求四边形 AEFD 的面积.
(3)若点 P 在 x 轴正半轴上(异于点 D ) ,点 Q 在 y 轴上,平面内是否存在点 G ,使得以点 A , P , Q , G 为顶点的四边形与四边形 AEFD 相似?若存在,求点 P 的坐标;若不存在,试说明理由.