(本小题满分12分)已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=x2相交于B、C两点.(1)如图1,当点C的横坐标为1时,求直线BC的解析式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;(3)如图2,设(m<0),过点的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.
(本小题满分14分)如图,在菱形 中, , 相交于点 , 为 的中点, . (1)求 的度数; (2)如果 ,求 的长.
(本小题满分10分)已知:如图, , 是□ABCD的对角线 上的两点, ,求证: .
小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积. 小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答: (1)求图1中△ABC的面积; 参考小明解决问题的方法,完成下列问题: (2)图2是一个6×6的正方形网格(每个小正方形的边长为1). ①利用构图法在答题卡的图2中画出三边长分别为、、的格点△DEF; ②计算△DEF的面积是 . (3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF.若PQ=,PR=,QR=,求六边形AQRDEF的面积.
已知a,b,c满足,(1)求,b,c的值;(2)试问以,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.
如图,△AOB、△COD是等腰直角三角形,点D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=3,BD=1,求CD和△ABC的面积.