(本小题满分14分)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD,AC为对角线,BD=8.①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在, 请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB 的距离.
﹣(本题10分)如图,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,请按要求完成下列各题: (1)用签字笔画AD∥BC(D为格点),连接CD;线段CD的长为; (2)请你在的三个内角中任选一个锐角,若你所选的锐角是,则它所对应的正弦函数值是. (3)若E为BC中点,则tan∠CAE的值是.
﹣(本题8分) 小明有2枚黑棋子,小亮有2枚白棋子,两人随机将4枚棋子放在下图 的格子中(每格只放一枚)。若4枚棋子黑白相间排列,就算小明赢,否则就算小亮赢.这
个游戏对双方公平吗?请说明理由.
﹣(本题8分)“五一”期间,某超市贴出促销海报,内容如图1.在商场活动期间,王莉和同组同学随机调查了部分参与活动的顾客,统计了200人次的摸奖情况,绘制成如图2的频数分布直方图.
图2
﹣(本题8分)如图,在等腰梯形中,为底的中点,连结、. 求证:.
﹣(本题8分)化简: