如图,已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC.(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.
实践操作:
第一步:如图1,将矩形纸片 ABCD 沿过点 D 的直线折叠,使点 A 落在 CD 上的点 A ' 处,得到折痕 DE ,然后把纸片展平.
第二步:如图2,将图1中的矩形纸片 ABCD 沿过点 E 的直线折叠,点 C 恰好落在 AD 上的点 C ' 处,点 B 落在点 B ' 处,得到折痕 EF , B ' C ' 交 AB 于点 M , C ' F 交 DE 于点 N ,再把纸片展平.
问题解决:
(1)如图1,填空:四边形 AE A ' D 的形状是 ;
(2)如图2,线段 MC ' 与 ME 是否相等?若相等,请给出证明;若不等,请说明理由;
(3)如图2,若 AC ' = 2 cm , D C ' = 4 cm ,求 DN : EN 的值.
如图,直线 AB 与反比例函数 y = k x ( x > 0 ) 的图象交于 A , B 两点,已知点 A 的坐标为 ( 6 , 1 ) , ΔAOB 的面积为8.
(1)填空:反比例函数的关系式为 y = 6 x ;
(2)求直线 AB 的函数关系式;
(3)动点 P 在 y 轴上运动,当线段 PA 与 PB 之差最大时,求点 P 的坐标.
如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 ⊙ O 交 BC 于点 D ,过点 D 的直线 EF 交 AC 于点 F ,交 AB 的延长线于点 E ,且 ∠ BAC = 2 ∠ BDE .
(1)求证: DF 是 ⊙ O 的切线;
(2)当 CF = 2 , BE = 3 时,求 AF 的长.
把抛物线 C 1 : y = x 2 + 2 x + 3 先向右平移4个单位长度,再向下平移5个单位长度得到抛物线 C 2 .
(1)直接写出抛物线 C 2 的函数关系式;
(2)动点 P ( a , - 6 ) 能否在抛物线 C 2 上?请说明理由;
(3)若点 A ( m , y 1 ) , B ( n , y 2 ) 都在抛物线 C 2 上,且 m < n < 0 ,比较 y 1 , y 2 的大小,并说明理由.
5月20日九年级复学啦 ! 为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.
学生体温频数分布表
组别
温度 ( ° C )
频数(人数)
甲
36.3
6
乙
36.4
a
丙
36.5
20
丁
36.6
4
请根据以上信息,答案下列问题:
(1)频数分布表中 a = ,该班学生体温的众数是 ,中位数是 ;
(2)扇形统计图中 m = ,丁组对应的扇形的圆心角是 度;
(3)求该班学生的平均体温(结果保留小数点后一位).