如图,在平面直角坐标系xOy中,直线y=x+1与交于点,分别交x轴于点B和点C.(1)求点B、C的坐标;(2)求△ABC的面积.
如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2. (1)在图中画出四边形AB′C′D′; (2)填空:△AC′D′是 三角形.
在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°. (1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF; (2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:; (3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境: 请根据上面的信息,解决问题: (1)设AB=x米(x>0),试用含x的代数式表示BC的长; (2)请你判断谁的说法正确,为什么?
如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.
如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点. (1)请判断△OEF的形状,并证明你的结论; (2)若AB=13,AC=10,请求出线段EF的长.