如图①所示,在正方形ABCD中,M是AB的中点,E是AB的延长线上一点,MN⊥DM,且交∠CBE的平分线于点N.(1)求证:MD=MN;(2)若将上述条件中“M是AB的中点”改成“M是AB上任意一点”,其余条件不变,如图②所示,则结论“MD=MN”还成立吗?若成立,给出证明;若不成立,请说明理由.
如图一,在Rt△ABC中,∠ACB=90°,∠A=30°,P为BC边上任意一点,点Q为AC边动点,分别以Cm、MQ为边做等边△MPF和等边△PQE,连接EF. (一)试探索EF与AB位置关系,并证明; (5)如图5,当点P为BC延长线上任意一点时,(一)结论是否成立?请说明理由. (3)如图3,在Rt△ABC中,∠ACB=90°,∠A=m°,P为BC延长线上一点,点Q为AC边动点,分别以CP、PQ为腰做等腰△PCF和等腰△PQE,使得PC=PF,PQ=PE,连接EF.要使(一)的结论依然成立,则需要添加怎样的条件?为什么?
如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,BC=3,CD=1. (1)求证tan∠AEC=; (2)请探究BM与DM的关系,并给出证明.
如图,正方形ABCD的边长为4,请你建立适当的平面直角坐标系,写出各个顶点的坐标.
设,其中可取、2,可取、、3.试求是正值的概率.
已知平面直角坐标系xOy,一次函数的图像与y轴交于点A,点M在正比例函数的图像上,且MO=MA.求点M的坐标.