如图,中心在坐标原点,焦点分别在轴和轴上的椭圆,都过点,且椭圆与的离心率均为.(Ⅰ)求椭圆与椭圆的标准方程;(Ⅱ)过点引两条斜率分别为的直线分别交,于点P,Q,当时,问直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
已知函数在一个周期上的系列对应值如下表: (1)求的表达式; (2)若锐角的三个内角、、所对的边分别为、、,且满足,,,求边长的值.
已知圆经过,两点,且在两坐标轴上的四个截距之和为2. (1)求圆的方程; (2)若为圆内一点,求经过点被圆截得的弦长最短时的直线的方程.
已知. (1)当时,求上的值域; (2)求函数在上的最小值; (3)证明: 对一切,都有成立
已知数列满足: (1)求的值; (2)求证:数列是等比数列; (3)令(),如果对任意,都有,求实数的取值范围.
已知中,点A、B的坐标分别为,点C在x轴上方。 (1)若点C坐标为,求以A、B为焦点且经过点C的椭圆的方程; (2)过点P(m,0)作倾角为的直线交(1)中曲线于M、N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值。