(本小题满分12分)设函数,其中,,x∈R.(I)求的值及函数的最大值; (II)求函数的单调递增区间.
.(本小题满分12分)如图,在四棱锥P-ABCD中,底面为正方形,PA丄平面ABCD,且PA=AD,E为棱PC上的一点,PD丄平面(I)求证:E为PC的中点;(II)若N为CD的中点,M为AB上的动点,当直线MN与平面ABE所成的角最大时,求二面角的大小.
(本小题满分12分)为了预防春季流感,市防疫部门提供了编号为1,2,3,4的四种疫苗供市民选择注射,每个人均能从中任选一个编号的疫苗接种,现有甲,乙,丙三人接科苗.(I )求三人注射的疫苗编号互不相同的概率;(II)设三人中选择的疫苗编号最大数为,求的分布列及数学期望.
(本小题满分12分).已知等差数列的前n项和为,公差d>0,且(I )求数列的通项公式;(II)若求数列的前n项和Tn.
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)如图,P,Q是以原点为圆心的单位圆上的两个动点,若它们同时从点A(1,0)出发,沿逆时针方向作匀角速度运动,其角速度分别为(单位:弧度/秒),M为线段PQ的中点,记经过x秒后(其中),(I)求的函数解析式;(II)将图象上的各点均向右平移2个单位长度,得到的图象,求函数的单调递减区间.