已知中心在原点,焦点在坐标轴上的椭圆的方程为它的离心率为,一个焦点是,过直线上一点引椭圆的两条切线,切点分别是A、B.(Ⅰ)求椭圆的方程;(Ⅱ)若在椭圆上的点处的切线方程是.求证:直线AB恒过定点,并求出定点的坐标;(Ⅲ)记点C为(Ⅱ)中直线AB恒过的定点,问否存在实数,使得 成立,若成立求出的值,若不存在,请说明理由
(本小题满分12分)已知点. (Ⅰ)直线经过点,且在两坐标轴上的截距相等,求直线的方程; (Ⅱ)直线经过点,且坐标原点到该直线的距离为2,求直线的方程
(本小题满分12分)已知公差大于零的等差数列满足:. (Ⅰ)求数列通项公式; (Ⅱ)记,求数列的前项和.
定义:称为个正数的“均倒数”.已知数列的前项的“均倒数”为, (1)求的通项公式; (2)设,试判断并说明数列的单调性; (3)求数列的前n项和.
已知向量 (1)当时,求的值; (2)设,已知在中,三个内角A、B、C所对的边分别是,若,设,求的取值范围.
已知分别是三内角A、B、C所对的边, (1)求角A的大小; (2)若等差数列中,,设数列的前项和为,求证:.