在边长为的菱形中,.现沿对角线把△折起,折起后使的余弦值为.(Ⅰ)求证:平面⊥平面; (Ⅱ)若是的中点,求三棱锥的体积.
16.(本小题满分12分)已知,,设.(1)求函数的最小正周期及其单调递增区间; (2)若分别是锐角的内角的对边,且,,试求的面积.
已知数列和满足,,数列的前和为.(1)求数列的通项公式;(2)设,求证:;(3)求证:对任意的有成立.
设函数.(1)若是函数的一个极值点,试求出关于的关系式(用表示),并确定的单调区间;(2)在(1)的条件下,设,函数.若存在使得成立,求的取值范围.
已知点C(1,0),点A、B是⊙O:上任意两个不同的点,且满足,设P为弦AB的中点.(1)求点P的轨迹T的方程;(2)试探究在轨迹T上是否存在这样的点:它到直线的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.
如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC平面ABC ,,已知AE与平面ABC所成的角为,且.(1)证明:平面ACD平面;(2)记,表示三棱锥A-CBE的体积,求的表达式;(3)当取得最大值时,求二面角D-AB-C的大小.